SYNTHESIS OF CYCLIC KETOMETHYLENE DIPEPTIDE DERIVATIVES

M. J. Domínguez, R. González-Muñiz* and M. T. García-López

Instituto de Química Médica, Juan de la Cierva, 3. 28006 Madrid, Spain

Abstract.—Methyl 6-aralkyl-2,5-diketopiperidine-3-carboxylates derived from L-Phe and L-Trp, and their 3-substituted analogues in which the 3-substituent is the side chain of Phe, Asp and Ala have been synthesized. Cycle[Trpw(COCH₂)Gly] and cycle[Phew(COCH₂)-\(\xi\)-Phe] have been also prepared.

(Received in UK 28 January 1992)

INTRODUCTION

Substitution of the amide bond -CONH- by the isosteric ketomethylene -COCH2-group has been used to prepare metabolically stable peptides and various enzyme inhibitors. $^{1-3}$ However, this modification, which provides enzymatic resistance, causes a loss of the amide bond rigidity and, therefore, it increases conformational mobility. The lactam restriction of peptide conformation, originally introduced by Freidinger. 4 has aroused considerable interest in recent years as effective structural tools for probing the active conformation of bioactive peptides. $^{5.6}$ In a number of instances, locking bioactive peptides into active conformers by lactam backbone modification has led to increases in their potency. $^{7.8}$ The incorporation of 2-ketopiperazines into certain peptide neurotransmitter generates analogues with important biological activity. 9 while 3-amino-2-ketopiperidine-6-carboxylic acid stabilizes β -turns of peptides. 10 All these facts focused our attention on 2,5-diketopiperidines as conformationally restricted analogues of ketomethylene dipeptides.

In a previous communication, 11 we have reported the synthesis of the methyl 6-aralkyl-2,5-diketopiperidine-3-carboxylates $\bf 3a$ and $\bf 4ab$. We now describe the synthesis of the 3-substituted derivatives $\bf 11ab$ -16ab in which the new substituent at C-3 of the diketopiperidine ring is the side chain of the second amino acid residue (Phe, Asp, Ala). The corresponding 2,5-diketopiperidine-3-carboxylic acids could be incorporated into higher peptides or could provide the cyclic ketomethylene dipeptide analogues. In order to demonstrate this latter possibility, the syntheses of $cycle[Trp\psi(COCH_2)Gly](\bf 19)$ and $cycle[Phe\psi(COCH_2)-\xi-Phe]$ ($\bf 20ab$) are also described. With the aim of determining the absolute configuration at C-3 of the diketopiperidines here reported, a conformational study of compounds $\bf 3a$, $\bf 4ab$ and their 3-substituted analogues is also included.

RESULTS AND DISCUSSION

As shown in Scheme 1, the 3-disubstituted-2,5-diketopiperidine derivatives 11ab-16ab were prepared by two alternative routes, using the γ -ketodiesters 1^{12} and 2^{13} as common starting compounds. In the first synthetic route, the appropriate amino acid side chain at C-3 position was introduced by direct alkylation of the 2,5-diketopiperidine-3-carboxylate derivatives 3a and 4ab, 11 following Methods A and B. Thus, alkylation of 3a or 4ab with benzyl bromide and ethyl bromoacetate in 1,2-dimethoxyethane, using sodium methoxide as base (Method A) afforded the 3-disubstituted derivatives 11ab or 12ab, and 13ab or 14ab, respectively (Table 1). A similar alkylation using methyl iodide resulted in poor yield of compounds 16ab, while formation of the 6-benzyl analogues 15ab was not observed. However, 30-40% yield of these 3-methyl substituted derivatives were obtained, after six days, by alkylation with methyl iodide in a two phase reaction using NaOH as base and tetrabutylhydrogen sulfate as phase-transfer catalyst 14.15 (Method B). Under these conditions, the starting 3-monosubstituted compounds were recovered in 25-30%, while hydrolysis of the methyl ester took place when prolonged reaction times were used.

Scheme 1 . Method A : NaOMe/R1CH₂X; Method B : HSO₄NtBu₄/KOH/IMe; Method C : H₂/Pd-C

In order to improve the yield of the desired 3-disubstituted derivatives 11ab-16ab, the reverse sequence route involving alkylation of ketodiesters 1 and 2 and subsequent cyclization was investigated. Thus, reaction of 1 and 2 with benzyl bromide, ethyl bromoacetate and methyl iodide in the presence of sodium methoxide afforded the disubstituted malonate derivatives 5-10 in high yield (> 82%). In a similar way to that described for the preparation of 3a and 4ab, 11 removal of the Z group and lactamization took place in one pot reaction when the ketodiesters 5-16 were hydrogenated at room temperature and 25 psi, using Pd/C as catalyst (Method C). Comparing both synthetic routes in each other starting from 1 and 2, that involving catalytic hydrogenation and subsequent cyclization of the disubstituted malonates 5-10 (Method C) resulted in higher overall yields (50-60%) than direct alkylation of the diketopiperidine ring, previously formed, (17-34%, Method A and B).

Table 1.—Characterization data of compounds 11ab-16ab

		Chromatography	Diastereomeric	Mol.	Found (Required)			
Compd.	Yield (%)	EtOAc:hexane	ratio a/b d	Formula	С	Н	N	MS (M+
11ab	57ª	1:3	2:1	C ₂₁ H ₂₁ NO ₄ .H ₂ O	68.02	6.16	3.95	351
	68°		2:1		(68.27)	(6.28)	(3.79)	
12ab	17ª	1:1	2:1	C ₂₃ H ₂₂ N ₂ O ₄	70.52	5.90	6.89	390
	67°		2:1		(70.75)	(5.68)	(7.17)	
13ab	54ª	1:2	3:1	C ₁₈ H ₂₁ NO ₆	62.01	5.97	4.20	347
	50°		3:1		(62.24)	(6.09)	(4.03)	
14ab	55ª	1:1	2:1	C ₂₀ H ₂₂ N ₂ O ₆	62.08	6.00	7.50	386
	6 7 °		2:1		(62.17)	(5.74)	(7.25)	
15ab	31 ^b	1:2	2:1	C ₁₅ H ₁₇ NO ₄ . 1/2H ₂ O	63.17	6.34	4.97	275
	70°		2:1		(63.37)	(6.38)	(4.93)	
16ab	16ª	2:1	2:1	C ₁₇ H ₁₈ N ₂ O ₄	64.79	6.08	8.88	314
	41^{b}		2:1		(64.96)	(5.77)	(8.91)	
	61°		2:1					

 $^{^{\}rm a}$ From method A. $^{\rm b}$ From method B. $^{\rm c}$ From method C. $^{\rm d}$ Estimated by $^{\rm l}$ H-NMR.

Independently of the Method, compounds 11ab, 12ab, 14ab-16ab were obtained as 2:1 mixtures of diastereoisomers while a 3:1 ratio was obtained for 13ab (Table 1), as determined by ¹H-NMR spectroscopy. At this point, it is interesting to note that the degree of stereoselectivity found in the lactamization of 1 and 2 to the 2.5-diketopiperidine-3-carboxylates 3a and 4ab was strongly dependent on the starting amino acid derivative. ¹¹ Nevertheless in the case of the disubstituted malonates 5-10.

neither this starting derivatives nor the R¹ substituent influenced the stereoselectivity of the lactamization. Similarly, neither the alkylating agent nor the nature of the starting 2,5-diketopiperidine (Ar and stereochemistry at C-3) affected, in general, the stereoselectivity of the alkylation. In all cases, the 3-substituted-6-aralkyl-2,5-diketopiperidine-3-carboxylates 11a-16a having a *cis* disposition between the 3-alkyl substituent and the 6-aralkyl group were obtained as the major diastereoisomers.

Finally, compounds **4ab** and **11ab** were saponified to provide the corresponding 3-carboxylic acid derivatives **17ab** and **18ab**, which upon decarboxylation, led to the cyclic ketomethylene dipeptides $cycle[Trp\psi(COCH_2)Gly]$ (**19**) and $cycle[Phe\psi(COCH_2)-\xi-Phe]$ (**20ab**), respectively (Scheme 2). Although there is no reason why the decarboxylation step should be stereoselective, compound **20ab** was obtained as a 2:1 mixture of diastereoisomers.

17ab, 19 : Ar=indole, R¹= H 18ab,20ab : Ar=Ph, R¹=CH₂Ph

Scheme 2

The absolute configuration at C-3 of all the 2,5-diketopiperidines here reported was deduced from a conformational study by ¹H-RMN of the 3-monosubstituted derivatives **3a** and **4ab** and the 3-disubstituted analogues **11ab**, **12ab**, **13a**, **14ab**, **15ab** and **16ab**.

It is known that in 2,5-diketopiperazines derived from one aromatic amino acid, the preferred conformation is one in which the arylmethylene side chain folds over the diketopiperazine ring (Conformation A). ¹⁶⁻¹⁸ In order to study whether the diketopiperidine analogues **3a**, **4ab** and their C-3 alkyl derivatives also show this preference, the percentage of the three staggered conformers around the C₆-C₇ bond (Conformations A, B and C) were calculated in CDCl₃ and DMSO. ¹⁹ Since it was not possible to determine experimentally the coupling constants for each rotamer, they were calculated using the generalized Karplus equation parametrized for three substituents (Table 2). ¹⁹ As indicated in the Table, the conformation equilibrium is clearly dependent on the solvent. Thus, the 6-aralkyl side chain adopts predominantly the folded conformation A in DMSO while in CDCl₃ one of the unfolded forms, B or C, is the most populated. According to this, and due to the aromatic ring current, ²⁰ the H-3 proton in the 3-monosubstituted compounds **3a** and **4a** is more shielded than in

compounds **4b** (Table 3) indicating that this proton in diketopiperidines **3a** and **4a** is cis to the 6-aralkyl moiety. The lower shielding effect observed for the H-3 in the cis diastereoisomers in CDCl₃ ($\Delta\delta_{DMSO}$ =0.87 ppm, $\Delta\delta_{CDCl_3}$ =0.21 ppm) is in agreement with the lower percentage of the folded conformation in this solvent. As the absolute configuration at C-6 is S, since the synthesis started with L-phenylalanine and L-tryptophan derivatives, the absolute configuration at C-3 is S in compounds **3a** and **4a**, and R in the diastereoisomer **4b**.

Table 2.—Calculated percentages of rotameric states around C₆-C₇ bond for the 2,5-diketopiperidines **3, 4, 11-16**^a

Comp.	Solvent	% A _I	%BI	% C _I	%AII	%BII	% C _{II}
3a	DMSO	51	20	29	56	26	22
4a	DMSO	57	17	26	53	23	24
4a	CDCl ₃	25	2	73	30	70	0
4 b	DMSO	50	18	32	50	30	20
4 b	CDCl ₃	18	7	7 5	23	74	3
11 a	DMSO	67	11	22	67	18	15
11a	CDCl ₃	12	8	80	18	7 9	3
11b	DMSO	62	13	25	63	20	17
11b	CDCl ₃	12	2	86	14	84	2
12a	DMSO	60	18	22	60	18	22
12a	CDCl ₃	12	5	83	18	82	0
12b	DMSO	44	14	42	46	40	14
13a	CDCl ₃	7	8	85	14	85	1
14a	DMSO	59	24	17	57	15	28
14a	CDCl ₃	5	8	87	11	87	2
15a	DMSO	60	11	29	61	25	14
15b	DMSO	52	16	32	53	29	18
16a	DMSO	52	16	32	55	26	19
16a	CDCl ₃	8	9	83	15	82	3
16b	DMSO	47	21	32	47	30	23

 J_A^{60} =3.39; J_A^{300} =2.65; J_B^{60} =3.62; J_B^{180} =11.8; J_C^{180} =11.8; J_C^{300} =2.87.

^a Because the H-7 and H-7' resonances can not be assigned individually, the percentages of rotamers A, B and C were calculated for the two possible solutions (I and II).

Table 3.—Significant ¹H-NMR chemical shifts and coupling constants of 2,5-diketopiperidine derivatives 3, 4, 11-16 (300 MHz)

								_e (mdd) ς	æ					Couplin	Coupling constants (Hz)	nts (Hz)
Compd	l. Ar	R¹	Solvent	1-Н	3-Н	4-H	4H	Н-9	7-Н	7Н	со2сн3	1	R¹	1,6	J _{6,7}	J _{6,7} .
ĕ	Ph	н	DMSO-d ₆	8.26	3.01	2.79	2.31	4.15	3.10	2.89	3.61	•	! . 1	2.0	4.9	5.5
4	Indole	н	$DMSO-d_6$	8.22	3.03	2.76	2.30	4.12	3.27	3.03	3.60	ı	ı	2.0	4.7	5.2
48	Indole	н	CDC13	6.04	3.52	2.92	2.68	4.27	3.45	2.98	3.77	1	1	0.0	3.2	9.3
4	Indole	н	$DMSO-d_6$	7.99	3.90	5.64	2.39	4.19	3.12	3.02	3.59	•	1	0.0	4.7	5.8
4	Indole	н	CDCl3	5.97	3.73	3.05	2.88	4.16	3.58	2.92	3.81	1	1	_	3.6	9.6
118	Ph	CH_2Ph	$DMSO-d_6$	8.32	I	2.38	1.77	4.11	2.94	2.81	3.65	3.22b	3.06 ^b	_	4.2	4.8
11a	Ph	CH_2Ph	CDC13	5.74	١	2.78	2.34	4.09	3.25	2.55	3.77	3.46^{b}	3.26b	_	3.7	10.0
11b	Ph	CH_2Ph	DMSO-d ₆	8.19	I	2.70	2.40	3.82	2.81	2.65	3.47	3.18^{b}	3.08b		4.4	5.0
11 9	Ph	CH_2Ph	CDC13	5.70	1	2.92	2.67	3.57	3.34	2.59	3.83	3.60^{b}	$3.16^{\rm b}$	_	3.1	10.5
128	Indole	CH_2Ph	$DMSO-d_6$	8.15	١	2.34	1.99	4.06	3.12	2.98	3.65	3.12^{b}	3.01^{b}	_	4.8	4.8
12a	Indole	CH_2Ph	CDC13	5.79	١	2.73	2.33	4.09	3.36	2.70	3.67	3.36b	3.21^{b}	_	3.4	10.3
12	Indole	CH_2Ph	DMSO-d ₆	8.09	1	2.68	2.43	3.87	3.00	2.81	3.50	3.21^{b}	3.12^{b}		4.3	6.7
120	Indole	CH_2Ph	CDC13	5.79	ļ	2.89	2.62	3.58	3.42	2.70	3.74	3.52^{b}	3.09b		3.1	၁
138	Ph	CH ₂ CO ₂ Et	CDC13	5.87	١	3.04	2.69	4.23	3.37	2.74	3.74	3.12^{b}	3.00b	_	3.6	10.5
136	Ph	CH2CO2Et	CDCl ₃	5.86	l	3.28	3.00	4.14	3.52	2.74	3.79	3.18^{b}	2.97^{b}		3.2	၁
14a	Indole	CH ₂ CO ₂ Et	DMSO-d ₆	8.16	l	2.75	2.47	4.16	3.22	3.06	3.61	2.97 ^b	2.61^{b}	-	5.3	4.5
148	Indole	CH ₂ CO ₂ E	CDC13	5.91	l	3.17	3.11	4.31	3.54	2.95	3.71	3.0	3 5	_	3.6	10.7
1	Indole	CH ₂ CO ₂ Et	$DMSO-d_6$	8.7	1	3.06	2.76	4.16	3.18	2.93	3.51	3.06b	36b 2.81b		5.3	7.4
1 4	Indole	CH ₂ CO ₂ Et	CDC13	5.93		3.29	3.04	4.24	3.69	2.93	3.80	3.0	4p		3.4	ပ
150	Ph	CH3	DMSO-d ₆	8.21	I	2.77	2.01	4.25	3.07	2.94	3.62	1.0	8	_	4.2	5.4
2	Ph	CH3	$DMSO-d_6$	8.11	ı	2.68	2.54	4.25	3.01	2.85	3.56	1.30	Q	1.2	4.6	5.7
16a	Indole	CH3	$DMSO-d_6$	8.08	1	2.69	2.07	4.18	3.20	3.11	3.61	1.0	4.	0.0	4.6	5.5
16a	Indole	CH3	CDC13	5.91	ı	2.95	2.53	4.26	3.50	2.91	3.71	1.49	Ō,	0.0	3.7	10.3
2	Indole	CH ₃	DMSO-de	8.02]	2.	09:	4.18	3.13	3.02	3.52	1.2	.29	1.9	2.0	5.8
1 69	Indole	CH_3	CDC13	5.91	l	3.12	2.69	4.15	3.58	2.92	3.79	1.5	23	ပ	3.3	ပ

^a From the spectra of the diastereoisomeric mixtures. ^b 3-CH₂ protons. ^c They can not be exactly measured.

Upfield shifts, specially marked in DMSO, were also observed when the proton resonances of the 3-methyl group of compounds **15a** and **16a** were compared with those of the corresponding minor diastereoisomers **15b** and **16b** (Table 3). Therefore, the major isomers **15a** and **16a** were assigned as 3S and compounds **15b** and **16b** as 3R. In the case of the 3-ethoxycarbonylmethyl substituted analogues **13ab** and **14ab**, the proton resonances of the 3-CH₂ group could not be exactly determined from their ¹H-NMR spectra. For this reason stereochemical assignment of these compounds was made by correlation between their ¹H-NMR spectra and those of the corresponding 3-methyl analogues **15ab** and **16ab**.²¹

A shielding effect was also observed for the H-6 proton in the 6-aralkyl-3-benzyl-3-carboxylate substituted derivatives **11b** and **12b** when compared to the same proton in the diastereoisomers **11a** and **12a**, respectively (Table 3). This effect indicates that compounds **11b** and **12b** exist preferentially in the conformations containing the 6-H proton and the 3-benzyl group in *cis* disposition and, therefore, the 3R,6S configuration was assigned. However, in this case, the shielding effect is higher in CDCl₃ than in DMSO ($\Delta\delta_{\text{CDCl}_3}$ ~0.5 ppm, $\Delta\delta_{\text{DMSO}}$ ~0.2 ppm). This fact seems to indicate that the contribution of a folded conformation of the 3-benzyl group in compounds **11ab** and **12ab** is more important in CDCl₃ than in DMSO, while the 6-aralkyl moiety preferentially adopts this type of conformation in DMSO.

Differences in the 13 C-NMR spectra of diastereoisomeric 3,6-disubstituted diketopiperidines **11ab-16ab** were also found (Table 4). Thus, major isomers **11a-16a**, with a *cis* disposition between the 3- and 6-alkyl substituents, show upfield shieldings for C-4, C-6, C-7 and CH₂-3 carbons when compared to the corresponding diastereoisomers **11b-16b**. A downfield shift of about 1 ppm for the C-5 ketone carbon in compounds **11a-16a** is also observed.

Compd.	C-2	C-3	C-4	C-5	C-6	C-7	3-CH ₂ b
1 la	170.34	54.85	42.80	203.25	61.39	38.36	38.93
11b	171.00	54.77	43.57	202.06	62.49	39.30	39.74
12a	170.36	54.98	42.72	203.74	60.01	28.60	39.05
12b	171.20	54.91	43.60	202.65	61.19	29.42	39.84
14a	170.49	52.01	43.02	203.21	60.27	28.97	37.67
14b	170.42	51.57	43.98	201.52	61.86	29.15	37.82
15a	171.24	49.96	46.04	203.26	61.79	38.36	20.41
15b	171.24	49.71	46.28	202.43	62.83	39.31	20.65
16a	171.31	50.10	45.88	203.79	60.48	28.67	20.49
16b	171.31	49.79	46.27	202.90	61.55	29.43	20.65

Table 4.—Significant ¹³C-NMR chemical shifts of compounds **11-16** (CDCl₃, 75 MHz)^a

^a Compound **13ab** decomposed in the time needed for registered the ¹³C spectrum.

b CH3 for compounds 15 and 16.

Finally, as with the 3-carboxylates **4ab** and the 3-benzyl-3-carboxylate derivatives **11ab** and **12ab**, the configurational assignment at C-3 of the diastereomeric cyclic ketomethylene dipeptides **20a** and **20b** was made on the basis of the chemical shift differences in H-3 and H-6 protons between both diastereoisomers. This criterion allowed us to establish a 3R configuration for **20a** and a 3S configuration for **20b**.

In conclusion, 2,5-diketopiperidines derived from amino acids [cycle[Xaaw(COCH2) Yaal]] are accessible compounds from the corresponding 3-carboxylic acid substituted analogues. These analogues are easily synthesized, in one pot reaction, by catalytic hydrogenation and subsequent lactamization of conveniently substituted 4-ketodiesters, prepared from Z-protected amino acid halomethyl ketones and dimethyl malonate. Cycle[Xaaw(COCH2)Yaa] derivatives (Xaa=aromatic amino acid) seem to adopt a preferred conformation in DMSO solution in which the aralkyl side chain of Xaa folds over the 2,5-diketopiperidine ring. This conformational preference can be used to determine the absolute configuration at the new chiral centre.

EXPERIMENTAL

¹H-NMR spectra were recorded with a Varian EM-390 or a Varian XL-300 spectrometers operating at 90 or 300 MHz, respectively, using Me₄Si as internal standard. ¹³C-NMR spectra were recorded with a XL-300 (75 MHz). Mass spectra were recorded with a Vacuum Generators VG 12-250 instrument. Elemental analysis were obtained on a CHN-O-RAPID instrument.

Analytical TLC was performed on aluminium sheets coated with a 0.2 mm layer of silica gel 60 F_{254} (Merck). Silica gel 60 (230-400 mesh) (Merck) was used for column chromatography. Compounds were detected with UV light and Ehrlich's reagent. Compounds 1, 2, 3a, 4ab and 9 were prepared as described. $^{11-13}$

Alkylation of compounds 1 and 2 with benzyl bromide, ethyl bromoacetate and methyl iodide

A stirred solution of the 4-ketodiesters 1 or 2 (3 mmol) and freshly prepared soldium methoxide (3.3 mmol) in dimethoxyethane (20 mL) was treated with the corresponding alkyl halide (9 mmol). Stirring was continued overnight at room temperature, the solvent was evaporated, the residue was extracted with EtOAc and washed with water. The organic extract was dried (Na₂SO₄) and evaporated to leave a residue which was purified as specified in each case.

Methyl 2-benzyl-5(S)-benzyloxycarbonylamino-2-methoxycarbonyl-6-phenyl-4-oxohexanoate (5)

Chromatographed on a silica gel column using EtOAc-hexane (1:4). 85% yield: syrup. 1 H-NMR (90 MHz, CDCl₃): δ 7.3-6.8 (m, 10H, C₆H₅ and Z C₆H₅), 5.02 (d, 1H, 5-

NH), 5.0 (s, 2H, Z CH₂), 4.5 (m, 1H, 5-H), 3.6 (s, 6H, CO₂CH₃), 3.3 (m, 2H, 2-CH₂), 2.9 (m, 4H, 3-H and 6-H). Anal. Calcd. for C₃₀H₃₁NO₇: C 69.62, H 6.04, N 2.71. Found: C 69.71, H 5.95, N 2.56.

Methyl 2-benzyl-5(S)-benzyloxycarbonylamino-6-(indole-3-yl)-2-methoxycarbonyl-4-oxohexanoate (6)

This compound was purified on a silica gel column using EtOAc-hexane (1:3). 82 % yield: syrup. 1 H-NMR (300 MHz, DMSO-d₆): δ 10.87 (s, 1H, NHⁱ), 7.88 (d, 1H, 5-NH, J=8.1), 7.53-6.87 (m, 10H, indole and Z C₆H₅), 5.04 (d, 1H, Z CH₂, J=12.9), 4.98 (d, 1H, 5-NH), 4.31 (m, 1H, 5-H), 3.61 (s, 6H, CO₂CH₃), 3.22 (s, 2H, 2-CH₂), 3.10 (m, 2H, 3-H and 6-H), 2..98 (d, 1H, 3'-H, J=19.2), 2.89 (dd, 1H, 6'-H, J=14.7 and 9.3). Anal. Calcd. for C₃₂H₃₂N₂O₇: C 69.05, H 5.79, N 5.03. Found: C 68.89, H 5.77, N 5.22.

Ethyl 6(S)-benzyloxycarbonylamino-3,3-dimethoxycarbonyl-7-phenyl-5-oxoheptanoate (7)

This compound was purified on a silica gel column using EtOAc-hexane (1:3). 82% yield: syrup. $^1\text{H-NMR}$ (90 MHz, CDCl₃): δ 7.3-7.0 (m, 10H, C₆H₅ and Z C₆H₅), 5.2 (d, 1H, 6-NH), 5.0 (s, 2H, Z CH₂), 4.5 (m, 1H, 6-H), 4.0 (q, 2H, OCH₂CH₃), 3.6 (s, 6H, CO₂CH₃), 3.3 (s, 2H, 2-H), 3.0 (m, 4H, 4-H and 7-H), 1.1 (t, 3H, OCH₂CH₃). Anal. Calcd. for C₂₇H₃₁NO₉: C 63.15, H 6.08, N 2.73. Found: C 63.08, H 6.27, N 2.81.

Ethyl 6(S)-benzyloxycarbonylamino-3,3-dimethoxycarbonyl-7-(indole-3-yl)-5-oxoheptanoate (8)

Purified on a silica gel column using EtOAc-hexane (1:3). 89% yield: foam. $^1\text{H-NMR}$ (90 MHz, CDCl₃): δ 8.2 (s, 1H, NHⁱ), 7.6-6.9 (m, 10H, indole and Z C₆H₅), 5.4 (d, 1H, 6-NH), 5.0 (s, 2H, Z CH₂), 4.6 (m, 1H, 6-H), 4.0 (q, 2H, OCH₂CH₃), 3.6 (s, 6H, CO₂CH₃), 3.3 (s, 2H, 2-H), 3.1 (m, 2H, 7-H), 3.0 (s, 2H, 4-H), 1.2 (t, 3H, OCH₂CH₃). Anal. Calcd. for C₂9H₃2N₂O₉: C 63.04, H 5.84, N 5.07. Found: C 62.97, H 5.77, N 4.84.

Methyl 5(S)-benzyloxycarbonylamino-6-(indole-3-yi)-2-methoxycarbonyl-2-methyl-4-oxohexanoate (10)

This compound was purified on a silica gel column using EtOAc-hexane (1:2). 88% yield: foam. $^1\text{H-NMR}$ (300 MHz, DMSO-d₆): δ 10.86 (s, 1H, NH¹), 7.80 (d, 1H, 5-NH, J=7.8) 7.56-6.96 (m, 10H, indole and Z C₆H₅), 5.03 (d, 1H, Z CH₂, J=12.7), 4.96 (d, 1H, Z CH₂), 4.30 (m, 1H, 5-H), 3.60 (s, 6H, CO₂CH₃), 3.23 (d, 1H, 3-H, J=18.4), 3.10 (dd, 1H, H-6, J=14.3 and 5.7), 3.08 (d, 1H, 3'-H), 2.89 (dd, 1H, 6'-H, J=14.3 and 9.3), 1.31 (s, 3H, CH₃). Anal. Calcd. for C₂₆H₂₈N₂O₇: C 64.99, H 5.87, N 5.83. Found: C 64.87, H 5.91, N 5.55.

Synthesis of methyl 3-substituted-6-aralkyl-2,5-diketopiperidine-3-carboxylates 11ab-16ab

Method A: Alkylation of methyl 6-aralkyl-2,5-diketopiperidine-3-carboxylates 3a and 4ab using sodium methoxide as base

To a solution of the 2,5-diketopiperidine derivatives **3a** or **4ab** (1.5 mmol) and sodium methoxide (1.6 mmol) in dimethoxyethane (10 mL), the corresponding alkyl halide (4.5 mmol) was added. After 6-7 h of stirring at room temperature, the solvent was evaporated, the residue extracted with EtOAc and washed with H₂O. The organic layer was dried over Na₂SO₄, evaporated to dryness and the products purified as specified in each case (Table 1).

Method B: Alkylation of 3a and 4ab with methyl iodide in phase-transfer conditions

To a solution of compound **3a** or **4ab** (1 mmol) and methyliodide (8 mmol) in CH₂Cl₂ (1 mL), 2N NaOH (2 mmol) and tetrabutyl hydrogen sulfate (1 mmol) were added. After stirring at room temperature for 6 days, H₂O (5 mL) and CH₂Cl₂ (50 mL) were added. The separated organic layer was dried over Na₂SO₄ and evaporated to give **15ab** or **16ab** which were purified as indicated in Table 1.

Method C: Cyclization of the 4-ketodiesters 5-10

A solution of the corresponding 4-ketodiester (2 mmol) in MeOH (200 mL) was hydrogenated at 30 psi and room temperature, in the presence of 10% Pd/C for 7 days. The catalyst was removed by filtration, and the filtrate was evaporated to dryness to leave a residue which was purified on a silica gel column using the solvent systems specified in each case (Table 1).

Characterization data of all products obtained by these methods are recorded in Tables 1. 3 and 4.

6(S)-(Indole-3-yl)methyl-2,5-diketopiperidine-3(ξ)-carboxylate (17ab)

A solution of compound **4ab** (0.6 g, 2 mmol) in MeOH (40 mL) was treated with 2N NaOH (1 mL, 2 mmol) and the mixture was stirred at room temperature for 3 h. After evaporation of the MeOH the remaining aqueous mixture was diluted with H_2O (20 mL), acidified with 1N HCl to pH 3, and extracted with EtOAc (150 mL). The extract was dried (Na₂SO₄) and evaporated. The residue was purified on a silica gel column using CH_2Cl_2 -MeOH (8:1) containing 0.1% AcOH, to give **17ab** as a solid (0.24 g, 42%). 1H_1 -NMR (300 MHz, DMSO-d₆): (3S,6S) isomer: δ 10.93 (s, 1H, NHⁱ), 7.50-6.88 (m, 5H, indole), 4.07 (m, 1H, 6-H), 3.20 (dd, 1H, 6-CH₂, J-14.6 and 5.0), 3.02 (m, 2H, 3-H and 6-CH₂), 2.61 (dd, 1H, 4-H, J=16.4 and 7.0), 2.21 (dd, 1H, 4'-H, J=16.4 and 5.5). (3R,6S) isomer: δ 10.75 (s, 1H, NHⁱ), 7.50-6.88 (m, 5H, indole), 4.15 (m, 1H, 6-H),

3.72 (dd, 1H, 3-H, J=10.4 and 5.6), 3.13 (m, 1H, 6-CH₂), 3.02 (m, 1H, 6-CH₂), 2.65 (dd, 1H, 4-H, J=16.6 and 5.6), 2.41 (dd, 1H, 4'-H, J=16.6 and 10.4). Anal. Calcd. for $C_{15}H_{14}N_{2}O_{4}.H_{2}O$: C 59.21, H 5.30, N 9.20. Found: C 58.95, H 5.51, N 9.07.

Cycle[L-Trp\(COCH_2)Gly] (19)

Compound **17ab** (0.2 g, 0.7 mmol) was refluxed in dioxane (20 mL) for 2.5 h. After evaporation to dryness the residue was purified on a silica gel column using CHCl₃-MeOH (10:1) to give the product (0.07 g, 41%) as a foam. ^1H -NMR (300 MHz, DMSOd₆): δ 10.92 (s, 1H, NH¹), 7.73 (d, 1H, 1-H, J=2.1), 7.48-6.93 (m, 5H, indole), 4.07 (m, 1H, 6-H), 3.19 (dd, 1H, 6-CH₂, J-15.9 and 5.3), 3.02 (dd, 1H, 6-CH₂, J=15.9 and 5.1), 2.51 (m, 1H, 3-H),2.25 (m, 1H, 4-H), 2.11 (m, 1H, 4'-H), 1.78 (m, 1H, 3'-H). MS: 242 (M⁺, 3.5), 130 (C₉H₈N, 100). Anal. Calcd. for C₁4H₁4N₂O₂: C 69.41, H 5.82, N 11.56. Found: C 69.35, H 5.99, N 11.50.

Cycle[L-Pheψ(COCH₂)-ξ-Phe] (20ab)

A solution of compound **11ab** (0.35 g, 1 mmol) in MeOH (20 mL) was treated with 6N NaOH (0.16 mL, 1 mmol) and stirred under argon atmosphere for 3 h. After evaporation of the solvents, H_2O (30 mL) was added, the aqueous solution was acidified with 1N HCl to pH 3 and extracted with EtOAc (100 mL). The organic layer was dried (Na₂SO₄) and evaporated to give crude **18ab**, which was refluxed in dioxane (25 mL) for 5 h. The residue, obtained after evaporation of the solvent, was purified on a silica gel column using EtOAc-hexane (1:2) to provide **20ab** as a solid (0.18 g, 63% from **9ab**). ¹H-NMR (300 MHz, DMSO-d₆): (3R,6S) isomer **20a**: δ 7.87 (s, 1H, 1-H), 7.25-6.96 (m, 10H, C₆H₅), 4.26 (m. 1H, 6-H), 2.96-2.80 (m, 4H, 3-H, 6-CH₂ and 3-CH₂), 2.28 (dd, 1H, 4-H, J=16.6 and 5.4), 2.10 (m, 1H, 3-CH₂), 1.85 (m, 1H, 4'-H. (3S,6S) Isomer **20b**: δ 7.92 (d, 1H, 1-H, J=2.0), 7.25-6.96 (m, 10H, C₆H₅), 4.04 (m, 1H, 6-H), 308 (dd, 1H, 6-CH₂, J=13.4 and 4.9), 2.96-2.80 (m, 2H, 3-CH₂ and 6-CH₂), 2.49 (m, 1H, 3-H), 2.41 (dd, 1H, 3-CH₂, J=14.2 and 5.0), 2.32 (m, 1H, 4-H), 1.94 (dd, 1H, 4'-H, J=16.3 and 4.2). MS: 293 (M+, 45), 202 (M+, 91, 5.4), 91 (Bn, 100). Anal. Calcd. for C₁₉H₁₉NO₂: C 77.79. H 6.53, N 4.77. Found: C 77.60, H 6.70, N 4.53.

Acknowledgments

We thank the C.I.C.Y.T for financial support (FAR 88-0298). We also thank Mr. F. Caballero for the preparation of the manuscript.

REFERENCES AND NOTES

1 Almquist, R.G.; Chao, W.R.; Ellis, M.E.; Johnson, H.L. J. Med. Chem., 1980, 23, 13921398.

- Ewerson, A.; Laufer, R.; Chorev, M.; Selinger, Z.; Gilon, C. J. Med. Chem., 1988, 31, 416-421.
- 3 Almquist, R.G.; Olsen, C.M.; Uyeno, E.T.; Toll, L. J. Med. Chem., 1984, 27, 115-120.
- 4 Freidinger, R.M.; Veber, D.F.; Hirschmann, R.; Paege, L.M. Int. J. Pept. Protein Res., 1980, 16, 464-470.
- 5 Sato, K.; Nagai, U. J. Chem. Soc. Perkin Trans 1, 1986, 1231-1234.
- 6 Kemp, D.S.; McNamara, P.E. J. Org. Chem., 1985, 50., 5834-5838.
- Freidinger, R.M.; Perlow, D.S.; Randall, W.C.; Saperstein, R.; Arison, B.H.; Veber, D.F. Int. J. Pept. Protein Res., 1984, 23, 142-150.
- 8 Cascieri, M.A.; Chicchi, G.G.; Freidinger, R.M.; Colton, C.D.; Perlow, D.S.; Williams, B.; Curtius, N.R.; McKnight, A.T.; Maguire, J.J.; Veber, D.F.; Liang, T. Mol. Pharmacol., 1985, 29, 34-38.
- 9 D. Maio, J.; Belleau, B. J. Chem. Soc. Perkin Trans 1, **1989**, 1687-1689.
- 10 Li, J.P.; Yellin, T.O.; Debrosse, C.W.; Eggleston, D.S. Int. J. Pept. Protein Res., 1989, 34, 311-318.
- 11 Gómez-Monterrey, I.; Domínguez, M.J.; González-Muñiz, R.; Harto, J.R.; García-López, M.T. *Tetrahedron Lett.*, **1991**, *32*, 3563-3564.
- 12 García-López, M.T.; González-Muñiz, R.; Harto, J.R. Tetrahedron Lett., 1988, 29, 1577-1580.
- 13 García-López, M.T.; González-Muñiz, R.; Harto, J.R. Tetrahedron, 1988, 44, 5131-5138.
- 14 Dehmlow, E.V. Angw. Chem. Int. Ed. English, 1974, 13, 170-179.
- 15 Brändströn, A.; Junggren, U. Tetrahedron Lett., 1972, 473-474.
- 16 Kopple, K.D.; Marr, D.H. J. Am. Chem. Soc., 1967, 89, 6193-6200.
- 17 Kopple, K.D.; Ohnishi, M. J. Am. Chem. Soc., 1969, 91, 962-970.
- 18 Woodard, R.W. J. Org. Chem., 1985, 50, 4796-4799.
- 19 Jardetzky, O. in NMR in Molecular Biology, Roberts, G.C.K. Ed. Academic Press: New York, 1981, p. 187-226.
- 20 Shiba, T.; Numai, K. Tetrahedron Lett., 1974, 6, 509-512.
- 21 Taking into account that the ethoxycarbonylmethyl group has preference over the $COCH_2$ branch of the ring, the main diastereoisomers 13a and 14a have 3R configuration.